lunes, 22 de agosto de 2011

Tecnologia 3d



Pantalla 3D
El principal objetivo de una pantalla 3D es reproducir escenas del mundo real y por lo tanto tridimensionales y poder mostrarlas como imágenes 3D por ejemplo, en la Televisión 3D. Hay dos sistemas destacados para visualizar contenidos 3D: estereoscópicos y autoestereoscópicos. Los primeros necesitan unas gafas especiales, mientras que los otros permiten disfrutar de la sensación 3D sin ningún tipo de complementos.


Principios físicos de la visión 3D


El sistema visual humano es un sistema binocular, es decir, disponemos de dos sensores (ojos) que, debido a su separación horizontal, reciben dos imágenes de una misma escena con puntos de vista diferentes. Mediante estas dos vistas el cerebro crea una sensación espacial. A este tipo de visión se le llama visión estereoscópica, en la que intervienen diversos fenómenos. Cuando observamos objetos muy lejanos, los ejes ópticos de los ojos son paralelos. Cuando observamos un objeto cercano, los ojos giran para que los ejes ópticos estén alineados sobre el mismo, es decir, convergen. Asimismo, se produce el acomodo o enfoque para ver nítidamente el objeto. Al conjunto de este proceso se le llama fusión. Un factor que interviene directamente en esta capacidad es la separación interocular. A mayor separación entre los ojos, mayor es la distancia a la que apreciamos el efecto de relieve.


Para visualizar correctamente un contenido 3D sería necesario
§  Evitar la sensación de mareo
§  El usuario no debe tener que hacer un esfuerzo para adaptarse a la sensación 3D, sino que esta sensación tiene que ser natural
§  La sensación 3D debe ser nítida y constante a lo largo de todas las figuras y especialmente en los contornos de los objetos
§  El sistema debe ser lo más independiente posible del ángulo de visión del usuario.


Evolución


Los pioneros en el estudio de la estereoscopia fueron Euclides y Leonardo da Vinci, que ya en su época observaron y estudiaron el fenómeno de la visión binocular. Pero para encontrar el primer dispositivo hay que remontarse al año 1838, cuando el físico escocés Sir Charles Wheatstone construyó un aparato con el que se podía apreciar el fenómeno de la visión estereoscópica. Ya en los años 50 se intentó la explotación comercial de películas 3D, pero dada la mala calidad de los contenidos no tuvo mucho impacto. Fue en los años 80 cuando se consiguieron resultados más espectaculares, con sistemas de gran formato de película, como el del IMAX, que consiguen imágenes de alta resolución en grandes pantallas. Así pues, la imagen tridimensional en movimiento no es novedad de ahora, y ya en los cines antiguos se proyectaban algunas películas tridimensionales que funcionaban emitiendo dos películas diferentes, cada una con un tinte de diferente color. Al ponernos unas gafas de estos colores (una en cada ojo), cada ojo veía una parte de la película, dejando "invisible" la otra, por lo que se obtenía una visión estereoscópica, dando sensación de profundidad. Con el avance de la tecnología, la técnica se fue perfeccionando, creando sistemas que hacían más o menos lo mismo, pero mejor. Así, existen gafas con polarización vertical en un ojo y horizontal en el otro que obtienen un efecto más real que con la polarización por colores. Sin embargo, estos sistemas no son cómodos ni prácticos, de manera que con la aparición de nuevas técnicas se ha logrado obtener pantallas que transmiten la sensación de profundidad sin necesidad de ningún complemento visual


Descripción
Una pantalla 3D es capaz de transmitir diferente información en cada ojo, consiguiendo así el efecto estereoscópico que a su vez, consigue el efecto de profundidad de la imagen. Este efecto se puede conseguir de dos maneras, mediante el uso de gafas (sistemas estereoscópicos) y sin ningún tipo de accesorio (sistemas autoestereoscópicos).
Sistemas estereoscópicos
Este tipo de sistemas necesitan el uso de gafas para una correcta visualización. Su funcionamiento se basa en que se emiten dos imágenes diferentes (captadas con una cámara esteroscópica), y cada ojo capta una mediante las gafas, para así tener una sensación de profundidad. A continuación veremos los diferentes tipos de gafas:
§  Anaglifos: los anaglifos son las gafas con un cristal de cada color que todo el mundo asocia al cine en 3D. Es el método más conocido, y también el primero en ser utilizado no sólo de forma anecdótica.
§  Gafas polarizadas: son gafas con un cristal polarizado horizontalmente y otro verticalmente, mientras que en la pantalla se proyectan las dos imágenes, una polarizada de cada manera.
§  Shutter Glasses: lo que permite que se pueda utilizar en casa es que en lugar de proyectarse imágenes con luz polarizada, se exponen alternativamente las dos imágenes. Para poder enviar una diferente a cada ojo del espectador lleva unas gafas con un obturador de cristal líquido (LCS), de forma sincronizada con la pantalla, las gafas hacen que las lentes sean transparentes u opacas, en función de la imagen que está proyectando.
Sistemas autoestereoscópicos
La idea es muy parecida a la de las pantallas que requieren de gafas para ver en tres dimensiones. Se trata de conseguir que la pantalla emita una imagen para el ojo izquierdo y otra por el derecho, y esto se realiza mediante una barrera de paralaje que interrumpe el haz de luz selectivamente para que cada imagen vaya en el ojo que le corresponde.


El problema se presenta cuando los ojos del usuario cambian de posición, es decir, cuando se cambia el ángulo de visión. Para evitar este efecto algunas compañías que están investigando sobre esta tecnología optan por hacer que sólo una posición sea la correcta para poder apreciar el efecto tridimensional, mientras que otros incorporan un detector de posición de los ojos del observador para que el efecto sea válido aunque se mire con un ángulo respecto a la perpendicular de la pantalla. Los displays 3D que se utilizan para realizar la representación de los contenidos 3D pueden ser divididos según la técnica empleada para dirigir las vistas izquierda y derecha en el ojo apropiado: unos necesitan dispositivos ópticos cerca de los ojos, y por el contrario, otros tienen este proceso integrado en el mismo display. Estos últimos, de visión libre (free-viewing o FTV), son los llamados autoestereoscópicos. El hecho de que el usuario no necesite incorporar ningún elemento hace que estos despierten un gran interés.



Problemática
Una pantalla 3D es un sistema multivisión. Los sistemas multivisión son reconocidos generalmente por proporcionar una reproducción superior de la imagen 3D por que la imagen visible cambia con el punto de vista del observador en relación a la pantalla. Con tal de exagerar la sensación de profundidad en imágenes estereoscópicas 3D, es posible aumentar el número de vistas, de modo que la imagen pueda ser observada desde varias posiciones. Sin embargo, el problema radica en que un aumento del número de vistas provoca una pérdida de resolución, dado que el número de píxeles que se pueden colocar en una pantalla de cristal líquido es limitado. Las pantallas convencionales multivisión emplean en general tres lentes lenticulares diseñadas para cubrir un ancho de visión de 62 a 65 mm, una distancia equivalente a la separación media entre ojos de una persona. Sin embargo, estas pantallas 3D aún presentan algunos problemas relacionados con los siguientes aspectos:

§  Zona de visión: Las imágenes en las pantallas 3D comunes diseñadas con un ancho de visión de 62 a 65 mm pueden aparecer incorrectas y resultar incómodas a menos que se vean de frente y desde una determinada distancia, ya que los ojos pueden detectar una imagen 2D en algunas partes de la pantalla. Es por este motivo que actualmente se trabaja en optimizar el ancho de visión para que se reduzca la aparición de imágenes 2D y permita que las imágenes 3D puedan visualizarse con un campo de visión más amplio.

  Pérdida de resolución: Para resolver el problema de la pérdida de resolución en las pantallas multivisión se puede utilizar una tecnología de procesamiento de imágenes llamada step 3D pixel array (mejora de la formación de píxeles 3D), actualmente ya probada por algunas compañías. Esta técnica tiene en cuenta la sensibilidad del ojo humano a la pérdida de resolución en la dirección horizontal. Al minimizar la degradación de la resolución horizontal del píxel, se mejora la calidad de la imagen para ofrecer a los espectadores imágenes 3D de mayor definición y más vivas.

Se ha visto pues que el efecto tridimensional presenta todavía poca estabilidad (depende de la posición del espectador) y la resolución de la imagen es escasa. La captación directa de la imagen real con este sistema requeriría un dispositivo multicámara, y este es un tema de investigación actual.

Algunas tecnologías

Existen varios tipos de tecnologías, algunas ya disponibles comercialmente:

§  Displays autoestereoscópicos o de paralaje: son pantallas de ordenador similares a las tradicionales, en las que no es necesario el uso de gafas polarizantes o filtros de colores. Algunos sistemas disponen de obturadores selectivos que muestran sólo las columnas de píxeles que corresponden a la imagen de uno de los ojos, obturando las que corresponden al otro, para la posición de la cabeza del usuario. Por ello suelen estar asociados a sistemas de seguimiento de la cabeza por infrarrojos.

§  Displays volumétricos: son sistemas que presentan la información en un determinado volumen. Al igual que una pantalla de TV es capaz de iluminar selectivamente todos y cada uno de los píxeles de su superficie, un display volumétrico es capaz de iluminar todos los píxeles en 3D que componen su volumen. Hay tres tipos principales:

§  Espejo varifocal: Una membrana espejeada oscila convirtiéndose en un espejo de distancia focal variable que refleja la imagen de una pantalla. Sincronizando la imagen que se muestra en la pantalla con la potencia óptica del espejo se puede barrer cualquier punto de un volumen determinado. Un sistema bastante experimental todavía

§  Volumen emisivo: Un determinado volumen ocupado por un medio capaz de emitir luz en cualquier parte de su interior como resultado de una excitación externa, por ejemplo mediante láser de diferentes longitudes de onda. Muy experimental, la gran dificultad es encontrar el material apropiado.

§  Pantalla rotativa: Una pantalla plana gira a una velocidad de alrededor de 600 rpm. Para cada uno de un conjunto predeterminado de posiciones angulares de la misma un sistema espejos proyecta sobre ella la imagen del objeto tal como corresponde a la perspectiva asociada a dicho ángulo. El resultado final es la imagen 3D de un objeto que podemos ver desde 360 grados.

Métodos de distribución espacial para dar sensación 3D

La mayoría de los monitores free-viewing producen un limitado número de vistas (como mínimo dos). En este caso, la única forma de dar una sensación 3D consiste en hacer una distribución espacial de las distintas vistas. Algunos de los métodos más destacados son:

§  Electroholográficos: Estos displays, actualmente en fase de investigación, pueden grabar y reproducir las propiedades de las ondas de luz (amplitud, longitud de onda y fase). Este proceso, en caso de realizarse de forma perfecta, sería el ideal para sistemas de visión libre 3D.

  Volumétricos: Estos displays crean la sensación de inmersión proyectando la información 3D dentro de un volumen. Estos sistemas típicamente presentan problemas de resolución además de necesitar mucho ancho de banda. Este tipo de displays se actualmente encuentra en fase de investigación.

§  Multiplexado por direccionamiento: Se aplican efectos ópticos como la difracción, refracción, reflexión y oclusión para redirigir la luz emitida por los píxeles de distintas vistas al ojo apropiado. Existen diversos tipos, pero los más destacados (debido a que están más desarrollados tecnológicamente) son los basados en la refracción y en oclusión.

§  Oclusión: Debido al efecto parallax (paralaje), partes de la imagen son ocultadas a un ojo y visibles para el otro. Existen diversos tipos dependiendo del número de hendiduras y de la posición de colocación de la barrera, que puede estar enfrente o detrás de la pantalla. Las pantallas con barrera de parallax detrás del display ya se pueden encontrar en el mercado en monitores tanto de PC como de portátiles. Como se observa en la siguiente figura, la barrera de parallax es la encargada que redirigir los haces de luz (y no la imagen en si), al ojo adecuado. El problema que tiene este tipo de displays es que la posición de visualización es muy estricta siendo posible su uso sólo para una persona.

§  Refracción: Como en el caso anterior existen diversos tipos de display. En este tipo de displays la imagen se compone de múltiples pequeñas imágenes 2D capturas con un amplio número de grupos de pequeñas lentes convexas. Cada grupo de lentes captura la escena desde un punto de vista distinto. De esta manera el usuario percibe diferentes imágenes para diferentes puntos de vista. El problema radica en que los grupos lentes deben de ser muy pequeños, debido a que cada píxel debe contener un grupo de lentes. Por este motivo, el display debe de tener una resolución muy alta. Como solución alternativa existen las pantallas lenticulares que usan lentes cilíndricas. Debido a la orientación vertical de las lentes, los rayos de luz de cada imagen son emitidos en direcciones específicas en el plano horizontal.

Actualidad

En los últimos tiempos las industrias como la cinematográfica y la de videojuegos, han incrementado la demanda de sistemas 3D que proporcionan un nivel de emoción superior al que ofrecen las imágenes bidimensionales. Las pantallas convencionales de 3D no están a la altura de esta demanda, debido a las limitaciones mencionadas en el campo de visión y a la baja resolución que ofrecen. Actualmente ya están siendo introducidos los primeros modelos de pantallas 3D en el mercado. Varios fabricantes (Philips, LG, Sharp,Sony...) están haciendo grandes avances en el desarrollo de monitores 3D que producen una visión estéreo de forma natural para el usuario y compatibles con 2D. Y es que las pantallas autoestereoscópicas 3D representan un gran reto para el futuro de la visualización de imágenes tridimensionales.

miércoles, 4 de mayo de 2011

DISPOSOTIVO DE ALMACENAMIENTO USB

DISPOSITIVO DE ALMACENAMIENTO USB


DEFINICION : Una memoria USB (de Universal Serial Bus; en inglés pendrive, USB flash drive) o lápiz USB, es un dispositivo de almacenamiento que utiliza memoria flash para guardar la información que puede requerir y no necesita baterías (pilas). La batería era necesaria en los primeros modelos, pero los más actuales ya no la necesitan. Estas memorias son resistentes a los rasguños (externos), al polvo, y algunos al agua que han afectado a las formas previas de almacenamiento portátil, como los disquetes, discos compactos y los DVD.




 HISTORIA:  Las primeras unidades flash fueron fabricadas por la empresa israelí M-Systems bajo la marca "Disgo" en tamaños de 8 MB, 16 MB, 32 MB y 64 MB. Estos fueron promocionados como los "verdaderos reemplazos del disquete", y su diseño continuó hasta los 256 MB. Los fabricantes asiáticos pronto fabricaron sus propias unidades más baratas que las de la serie Disgo.
Modelos Anteriores de este dispositivo utilizaban baterías, en vez de la alimentación de la PC
Las modernas unidades flash (2009) poseen conectividad USB 3.0 y almacenan hasta 256 GB de memoria (lo cual es 1024 veces mayor al diseño de M-Systems). También hay dispositivos, que aparte de su función habitual, poseen una Memoria USB como aditamento incluido, (como algunos ratones ópticos inalámbricos) o Memorias USB con aditamento para reconocer otros tipos de memorias (microSD, m2, etc.
En Agosto de 2010, Imation anuncia el lanzamiento al mercado de la nueva línea de USB de seguridad Flash Drive Defender F200, con capacidad de 1 GB, 2 GB, 4 GB, 8 GB, 16 GB y 32 GB. Estas unidades de almacenamiento cuentan con un sensor biométrico ergonómico basado en un hardware que valida las coincidencias de las huellas dactilares de identificación antes de acceder a la información. Entre su diseño destaca la gran resistencia al polvo, agua y a ser falsificadas; fuera de toda característica física el dispositivo proporciona seguridad avanzada a través de FIPS 140-2, cifrado AES de 256-bit nivel 3, autenticación, administración y seguridad biométrica; incluye también controles administrativos para gestionar hasta 10 usuarios y políticas de contraseñas complejas y personalizadas.


UTILIDAD: Las memorias USB Son comunes entre personas que transportan datos de su casa al lugar de trabajo, o viceversa. Teóricamente pueden retener los datos durante unos 20 años y escribirse hasta un millón de veces.
Aunque inicialmente fueron concebidas para guardar datos y documentos, es habitual encontrar en las memorias USB programas o archivos de cualquier otro tipo debido a que se comportan como cualquier otro sistema de archivos.
La disponibilidad de memorias USB a costos reducidos ha provocado que sean muy utilizadas con objetivos promocionales o de marketing, especialmente en ámbitos relacionados con la industria de la computación (por ejemplo, en eventos tecnológicos). A menudo se distribuyen de forma gratuita, se venden por debajo del precio de coste o se incluyen como obsequio al adquirir otro producto.
Otra utilidad de estas memorias es que, si la BIOS del equipo lo admite, pueden arrancar un sistema operativo sin necesidad de CD, DVD ni siquiera disco duro. El arranque desde memoria USB está muy extendido en ordenadores nuevos y es más rápido que con un lector de DVD-ROM. Se pueden encontrar distribuciones de Linux que están contenidas completamente en una memoria USB y pueden arrancar desde ella (véase LiveCD).
Las memorias USB de gran capacidad, al igual que los discos duros o grabadoras de CD/DVD son un medio fácil para realizar una copia de seguridad, por ejemplo. Hay grabadoras y lectores de CD-ROM, DVD, disquetera o Zip que se conectan por USB.
Además, en la actualidad, existen equipos de audio con entradas USB a los cuales podemos conectar nuestro pendrive y reproducir la música contenida en el mismo.
Como medida de seguridad, algunas memorias USB tienen posibilidad de impedir la escritura mediante un interruptor, como la pestaña de los antiguos disquetes. Otros permiten reservar una parte para ocultarla mediante una clave.


 MEMORIA USB POR DENTRO


MEMORIA SD DE MARCA KINGSTON DE 2 GB 





FORTALEZAS Y DEBILIDADES: A pesar de su bajo costo y garantía, hay que tener muy presente que estos dispositivos de almacenamiento pueden dejar de funcionar repentinamente por accidentes diversos: variaciones de voltaje mientras están conectadas, por caídas a una altura superior a un metro, por su uso prolongado durante varios años especialmente en pendrives antiguos.
Las unidades flash son inmunes a rayaduras y al polvo que afecta a las formas previas de almacenamiento portátiles como discos compactos y disquetes. Su diseño de estado sólido duradero significa que en muchos casos puede sobrevivir a abusos ocasionales (golpes, caídas, pisadas, pasadas por la lavadora o salpicaduras de líquidos). Esto lo hace ideal para el transporte de datos personales o archivos de trabajo a los que se quiere acceder en múltiples lugares. La casi omnipresencia de soporte USB en computadoras modernas significa que un dispositivo funcionará en casi todas partes. Sin embargo, Microsoft Windows 98 no soporta dispositivos USB de almacenamiento masivo genéricos, se debe instalar un driver separado para cada fabricante o en su defecto conseguir genéricos. Para Microsoft Windows 95 dichos drivers son casi inexistentes. Las memorias flash pueden soportar un número finito de ciclos de lectura/escritura antes de fallar, Con un uso normal, el rango medio es de alrededor de varios millones de ciclos. Sin embargo las operaciones de escrituras serán cada vez más lentas a medida que la unidad envejezca.


CONSIDERACIONES DE USOS: El cuidado de los pen drive o memorias USB es similar al de las tarjetas electrónicas; evitando caídas o golpes, humedad, campos magnéticos y calor extremo.
Antes de desenchufar la memoria del puerto USB es conveniente que el usuario notifique al sistema operativo ("Desmontar" en Linux o "Quitar el hardware con seguridad " desde el "Administrador de dispositivos" en Windows o "Expulsar" en Mac OS). En algunos sistemas la escritura se realiza en forma diferida (esto significa que los datos no se escriben en el momento) a través de un caché de escritura para acelerar los tiempos de dicha escritura y para que el sistema escriba finalmente "de una sola vez" cuando dicho caché se encuentre lleno, pero si la unidad es retirada antes que el sistema guarde el contenido de la caché de escritura se pueden provocar discrepancias en el sistema de archivos existente en la memoria USB que podría generar pérdidas de datos.
Para reducir el riesgo de pérdida de datos, la caché de escritura está desactivada en forma predeterminada para las unidades externas en los sistemas operativos Windows a partir de Windows XP, pero aun así una operación de escritura puede durar varios segundos y no se debe desenchufar físicamente la unidad hasta que haya finalizado completamente, de lo contrario, los datos a escribir se perderán. Aunque la memoria USB no sufra daños, los ficheros afectados pueden ser de difícil o incluso imposible recuperación llegando en algún caso a ser necesario un borrado o formateo completo del sistema de ficheros para poder volver a usarla. Por lo que la extracción hay que tener cuidado en la escritura, pero extraerlo en la lectura sería irrelevante.


COMPONENTES:

COMPONENTES PRIMARIOS:

Las partes típicas de una memoria USB son las siguientes:

  • Un conector USB macho tipo A (1): Provee la interfaz física con la computadora.
  • Controlador USB de almacenamiento masivo (2): Implementa el controlador USB y provee la interfaz homogénea y lineal para dispositivos USB seriales orientados a bloques, mientras oculta la complejidad de la orientación a bloques, eliminación de bloques y balance de desgaste. Este controlador posee un pequeño microprocesador RISC y un pequeño número de circuitos de memoria RAM y ROM.
  • Circuito de memoria Flash NAND (4): Almacena los datos.
  • Oscilador de cristal (5): Produce la señal de reloj principal del dispositivo a 12 MHz y controla la salida de datos a través de un bucle de fase cerrado (phase-locked loop)

COMPONENTES ADICIONALES: 

Un dispositivo típico puede incluir también:

  • Puentes y Puntos de prueba (3): Utilizados en pruebas durante la fabricación de la unidad o para la carga de código dentro del procesador.
  • LEDs (6): Indican la transferencia de datos entre el dispositivo y la computadora.
  • Interruptor para protección de escritura (7): Utilizado para proteger los datos de operaciones de escritura o borrado.
  • Espacio Libre (8): Se dispone de un espacio para incluir un segundo circuito de memoria. Esto le permite a los fabricantes utilizar el mismo circuito impreso para dispositivos de distintos tamaños y responder así a las necesidades del mercado.
  • Tapa del conector USB: Reduce el riesgo de daños y mejora la apariencia del dispositivo. Algunas unidades no presentan una tapa pero disponen de una conexión USB retráctil. Otros dispositivos poseen una tapa giratoria que no se separa nunca del dispositivo y evita el riesgo de perderla.
  • Ayuda para el transporte: En muchos casos, la tapa contiene una abertura adecuada para una cadena o collar, sin embargo este diseño aumenta el riesgo de perder el dispositivo. Por esta razón muchos otros tiene dicha abertura en el cuerpo del dispositivo y no en la tapa, la desventaja de este diseño está en que la cadena o collar queda unida al dispositivo mientras está conectado. Muchos diseños traen la abertura en ambos lugares.








DESARROLLOS FUTUROS : Las empresas de semiconductores están haciendo un gran esfuerzo en reducir los costos de los componentes mediante la integración de varias funciones de estos dispositivos en un solo chip, esto produce una reducción de la cantidad de partes y, sobre todo, del costo total.
Actualmente se está tratando de desarrollar en dichos lugares los dispositivos flash a una velocidad mayor gracias al futuro puerto USB 3.0.
Sin embargo, este dispositivo flash USB 3.0. está mejorado y alcanza una buena velocidad de transmisión debido a su nueva tecnología.
  

USB 3.0: Presentado en el año 2008. Aunque está listo para su uso, es probable que pase entre uno o dos años, para ser incluido en dispositivos de uso masivo, lo que sitúa la aparición de productos con esta nueva especificación a partir del año 2009 o 2010.
La principal novedad técnica del puerto USB 3.0. será que eleva a 4.8 gigabits/s la capacidad de transferencia que en la actualidad es de 480 Mb/s. Se mantendrá el cableado interno de cobre para asegurarse la compatibilidad con las tecnologías USB 1.0 y 2.0.
Si en USB 2.0 el cable dispone de cuatro líneas, un par para datos, una de corriente y una de toma de tierra, en USB 3.0 se añade cinco líneas. Dos de ellas se usarán para el envío de información y otras dos para la recepción, de forma que se permite el tráfico bidireccional, en ambos sentidos al mismo tiempo. El aumento del número de líneas permite incrementar la velocidad de transmisión desde los 480 Mb/s hasta los 4,8 Gb/s. De aquí se deriva el nombre que también recibe esta especificación: USB Superspeed.
La cantidad de energía que transporta un cable USB 1.x y 2.0 resulta insuficiente en muchas ocasiones para recargar algunos dispositivos, especialmente si utilizamos concentradores donde hay conectados varios de ellos. En USB 3.0, se aumenta la intensidad de la corriente de 100 miliamperios a 900 miliamperios, con lo que pueden ser cargados más dispositivos o hacerlo más rápido. Este aumento de la intensidad podría traer consigo un menor rendimiento energético. Pero pensando en ello, USB 3.0 utiliza un nuevo protocolo basado en interrupciones, al contrario que el anterior que se basaba en consultar a los dispositivos periódicamente.
El aumento de líneas en USB 3.0 provoca que el cable sea más grueso, un inconveniente importante. Si hasta ahora los cables eran flexibles, con el nuevo estándar estos tienen un grueso similar a los cables que se usan en redes Ethernet, siendo por tanto más rígidos.
Afortunadamente, igual que pasa entre USB 1.1 y USB 2.0 la compatibilidad está garantizada entre USB 2.0 y USB 3.0, gracias al uso de conectores similares, cuyos contactos adicionales se sitúan en paralelo, de forma que no afectan en caso de usar algún puerto que no sea del mismo tipo.